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ABSTRACT
Hierarchical data analysis is crucial in various fields for making discoveries. The linear mixed model is often
used for training hierarchical data, but its parameter estimation is computationally expensive, especially
with big data. Subsampling techniques have been developed to address this challenge. However, most
existing subsampling methods assume homogeneous data and do not consider the possible heterogeneity
in hierarchical data. To address this limitation, we develop a new approach called group-orthogonal sub-
sampling (GOSS) for selecting informative subsets of hierarchical data that may exhibit heterogeneity. GOSS
selects subdata with balanced data size among groups and combinatorial orthogonality within each group,
resulting in subdata that are D- and A-optimal for building linear mixed models. Estimators of parameters
trained on GOSS subdata are consistent and asymptotically normal. GOSS is shown to be numerically
appealing via simulations and a real data application. Theoretical proofs, R codes, and supplementary
numerical results are accessible online as supplementary materials.
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1. Introduction

The unprecedented growth of data in modern research poses
significant challenges in terms of storage and analysis. First, an
individual’s computing resources may not have the capacity to
store the entire dataset due to its large size. Second, even after
the dataset has been loaded into memory, traditional analysis
methods may be too slow or even impractical due to the large
volume of data (Bates 2014; Gao and Owen 2017).

Subsampling has been widely used to tackle the issue of stor-
age capacity and accelerate data analysis. Several subsampling
techniques have been developed to address the challenges of
big data, generally aiming to optimize the downstream mod-
eling. For example, for linear regression, Ma and Sun (2015)
proposed to use the leverage score to construct nonuniform
subsampling probabilities. Using the optimal design theory in
experimental design, Wang, Yang, and Stufken (2019) pro-
posed an information-based optimal subdata selection (IBOSS)
method based on the D-optimality criterion. Inspired by the
excellent properties of two-level orthogonal arrays under linear
models, Wang et al. (2021) proposed an orthogonal subsam-
pling (OSS) approach and showed that the OSS method typ-
ically outperforms existing methods in minimizing the mean
squared errors (MSE) of the estimated parameters and max-
imizing the efficiencies of the selected subdata. Some other
subsampling works for linear regression include Li and Meng
(2020), Ren and Zhao (2021), Wang (2022), and Yu and Wang
(2022), among others. Subsampling methods are also widely
studied when other downstream models are considered, for
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example, the generalized linear model (Ai et al. 2021b), quan-
tile regression (Wang and Ma 2021; Fan, Liu, and Zhu 2021;
Ai et al. 2021a; Shao, Song, and Zhou 2022), multiplicative
model (Ren, Zhao, and Wang 2023), nonparametric regression
(Meng et al. 2020; Sun, Zhong, and Ma 2021; Meng et al.
2022; Zhang et al. 2023), Gaussian process modeling (He and
Hung 2022) and the model-free scenario (Mak and Joseph
2018; Shi and Tang 2021). In addition, Meng et al. (2021)
proposed the “Lowcon” method to address the presence of
model misspecification. Xie, Bai, and Ma (2023) proposed an
optimal subsampling method for online streaming data. Yu
et al. (2022) considered the optimal subsampling method in
a distributed environment. Readers may also refer to Yu, Ai,
and Ye (2023) for a comprehensive review of subsampling
methodology.

Knowledge discovery in various fields often relies on the
analysis of complex data with a hierarchical structure. For exam-
ple, students could be sampled from within schools, patients
from within doctors, medical records from within individuals,
or participants in psychological tests from within communities.
For more applications, see, for example, Raudenbush (1993),
McCulloch and Searle (2004), Bennett and Lanning (2007),
Jiang and Nguyen (2007), Gao and Owen (2017), and Gao
and Owen (2020). When the covariates of different groups in
a dataset come from distinct distributions, they may demon-
strate intra-group homogeneity and inter-group heterogeneity.
Consequently, selecting a subset of data that has this hier-
archical structure requires additional consideration. Existing
subsampling methods often assume that the covariates are
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homogeneous throughout the entire dataset. Using these meth-
ods may overlook critical information contained in hierarchical
data. Therefore, it is imperative to develop specialized subsam-
pling techniques that can accurately identify and capture the
valuable information in such data.

In this article, we investigate the optimal subsampling
method for hierarchical data by assuming that the data points
come from a linear mixed model, which allows both fixed and
random effects and is particularly used to analyze the data with
a hierarchical structure, see Jiang and Nguyen (2007) and Gao
and Owen (2020). We develop a group-orthogonal subsampling
(GOSS) approach to tackle the memory and computational bar-
riers of linear mixed models. GOSS is particularly designed for
data with a hierarchical structure and targets two merits of the
selected subdata: data size balance among groups and combi-
natorial orthogonality within each group. First, GOSS achieves
data size balance among groups so that all groups contribute
equally to the subdata. Second, GOSS selects the subdata from
each group that approximate an orthogonal array (OA) to extract
informative data points. OAs are universally optimal and have
been employed in subdata selection for first-order linear regres-
sion (Wang et al. 2021). Our first original contribution lies in
extending the theory that establishes the optimality of OAs to the
context of the linear mixed model. Consequently, the selected
subdata by GOSS is guaranteed to be D- and A-optimal for
the generalized least squares (GLS) estimator of a linear mixed
model. Numerical results in this article and Appendix demon-
strate that GOSS outperforms existing methods in minimizing
the MSE of parameter estimators and the prediction error over
the full data.

Regarding the computing time, for a large full data size N with
R groups of p-dimensional observations and a fixed subdata size
n, the computational complexity is O(Np log(n/R)), which is a
little faster than O(Np log n) from OSS and as low as O(Np) from
IBOSS. In addition, GOSS is naturally suitable for distributed
parallel computing to further accelerate the computation. Theo-
retical results are provided to show the consistency and asymp-
totic normality of the GLS estimator obtained on the selected
subdata.

The rest of the article is organized as follows. Section 2
introduces the notations of the linear mixed model and the
fundamental framework for the GOSS method. Section 3 intro-
duces the OA and derives their theoretical optimality for obtain-
ing the GLS estimator of a linear mixed model. Section 4
proposes the GOSS method and investigates the asymptotic
property of the estimator based on the GOSS subdata. Sec-
tions 5 and 6 evaluate the GOSS algorithm via simulation studies
and a real-world application. Section 7 concludes the article.
Technical proofs and R codes are provided in supplementary
materials.

2. The Framework

Denote the full data as {xij, yij}j=1,...,Ci
i=1,...,R , which include R groups

and Ci observations in the ith group for i = 1, . . . , R, so that the
full data size is N = ∑R

i=1 Ci. Here xij is a p-vector of covariates
for the jth unit in the ith group, the first component of xij is
1, and yij is its response. Consider the following linear mixed

model,

yij = xT
ij β + ai + eij, xij ∈ R

p×1, i = 1, 2, . . . , R, j = 1, 2, . . . , Ci,
(1)

where β ∈ R
p×1 is a vector of fixed effects, ai is the iid

random effect associated with the ith group, ai ∼ (0, σ 2
A), and

eij ∼ (0, σ 2
E ) is the error term independent from ai. In the

model in (1), two observations in the same group are assumed to
have constant correlation σ 2

A/(σ 2
A + σ 2

E ), and observations from
different groups are uncorrelated. More details about the linear
mixed models can be found in Jiang and Nguyen (2007).

Let X = (XT
1 , . . . , XT

R)T ∈ R
N×p with Xi =

(xi1, . . . , xiCi)
T = (1Ci , Zi) and Zi = (zi1, . . . , ziCi)

T and Y =
(YT

1 , . . . , YT
R)T ∈ R

N×1 with Yi = (yi1, . . . , yiCi)
T , for i =

1, . . . , R. The Zi may be distinctly distributed for different i.
We are commonly interested in the estimator of β, whose GLS

estimator based on the full data is given by

β̂ = (XTV−1X)−1XTV−1Y

when σ 2
A and σ 2

E are known, where V = cov(Y) = σ 2
E IN +

σ 2
AA, and A ∈ R

N×N is a block diagonal matrix with the ith
block 1Ci 1T

Ci
. The estimator β̂ needs O(Np2) time complexity

to calculate, which is not an easy task when N is big. When σ 2
A

and σ 2
E are unknown, they are estimated from data, making the

process even slower.
Now consider taking a subset of size n from the full data,

where ni points are from the ith group so that n = ∑R
i=1 ni.

Denote the selected subdata as {x∗
ij, y∗

ij}j=1,...,ni
i=1,...,R . Let X∗ =

(X∗T
1 , . . . , X∗T

R )T with X∗
i = (x∗

i1, . . . , x∗
ini

)T = (1ni , Z∗
i ) and

Z∗
i = (z∗

i1, . . . , z∗
ini

)T , Y∗ = (Y∗T
1 , . . . , Y∗T

R )T with Y∗
i =

(y∗
i1, . . . , y∗

ini
)T . The GLS estimator based on the subdata is given

by

β̂
∗ = (X∗TV∗−1X∗)−1X∗TV∗−1Y∗, (2)

where V∗ = cov(Y∗) = σ 2
E In + σ 2

AA∗, and A∗ ∈ R
n×n is a

block diagonal matrix with the ith block 1ni 1T
ni . The σ 2

A and σ 2
E

in (2) may also be replaced by their estimators trained from the
subdata. We will see that the accuracy of the estimators for σ 2

A
and σ 2

E does not depend much on the subsampling strategies.
Therefore, we will focus on selecting the subdata that allows the
best estimation of β . From simple algebra,

E(β̂
∗
) = β and var(β̂

∗
) = (X∗TV∗−1X∗)−1 = M∗−1,

where

M∗ = X∗TV∗−1X∗ (3)

is the information matrix of the subdata. The optimal subdata
X∗ maximizes the information M∗ or, in other words, minimizes
var(β̂

∗
) in some manner, which can be obtained by minimizing

an optimality function of M∗−1. Denote ψ as the optimality
function. Finding the optimal subdata is to solve the following
optimization problem:

X∗opt = arg min
X∗⊆X

ψ(M∗−1)

s.t. X∗ contains n points. (4)
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This is akin to the fundamental idea behind optimal exper-
imental design (Kiefer 1959). Popular options for ψ include
the determinant and trace, which correspond to the D- and
A-optimality, respectively. Both of these two optimal criteria
have specific statistical meanings. Specifically, D-optimal design
minimizes the volume of the confidence ellipsoid centered at β̂

∗

by maximizing the determinant |M∗|, while A-optimal design
minimizes the average variance of the components of β̂

∗
by

minimizing the trace tr(M∗−1).
The optimization problem in (4) is not easy to solve. Exhaus-

tive search for solving the problem requires O(Nnn2p) oper-
ations, which is infeasible for even moderate sizes of X and
X∗. There are many types of algorithms for finding optimal
designs and among them, exchange algorithms are among the
most popular. For the reasons argued in Wang et al. (2021),
these algorithms are cumbersome in solving the subsampling
problem in (4). To this end, we will initially derive theoretical
results to establish the optimality of using an OA for the problem
defined in (4). Following that, we will develop a computation-
ally tractable subsampling approach called GOSS, which selects
subdata approximating an OA. Consequently, instead of directly
searching for the optimization in (4), GOSS efficiently uses an
OA to approximate its solution.

3. Optimality of OA for Linear Mixed Model

An OA of strength 2 on s levels is a matrix with combinatorial
orthogonality, that is, entries of the matrix come from a fixed
finite set of s levels, arranged in such a way that all ordered
pairs of the levels appear equally often in every selection of two
columns of the matrix. For a comprehensive introduction to
OA, see Hedayat, Sloane, and Stufken (1999). In this article, we
consider s = 2, and denote the two levels by −1 and 1. Here is
an example of 4 × 3 orthogonal array, where each of the ordered
pairs {(−1, −1), (−1, 1), (1, −1), (1, 1)} occurs once:⎛

⎜⎜⎝
−1 −1 −1
−1 1 1
1 −1 1
1 1 −1

⎞
⎟⎟⎠ .

The combinatorial orthogonality of OA is actually a type of bal-
ance that ensures that all columns are considered fairly and rows
distributed dissimilarly to cover as much different information
as possible. It has been shown that any OA with combinatorial
orthogonality is simultaneously D- and A-optimal under a first-
order linear model (Dey and Mukerjee 2009). These optimality
properties of OA have been used in Wang et al. (2021) for
subsampling problems under linear models.

Recall that in (4), for linear mixed model, the D-optimality
criterion selects subdata that minimizes the determinant
|M∗−1|, that is, maximizes |M∗|. Notice that V∗ = diag{V∗

i }R
i=1,

with V∗
i = cov(Y∗

i ) being the covariance matrix for the ith
group, we thus can decompose M∗ in (3) by

M∗ =
R∑

i=1
X∗T

i V∗−1
i X∗

i =
R∑

i=1
M∗

i ,

where M∗
i = X∗T

i V∗−1
i X∗

i is the information matrix for the ith
group of the subdata. We first study the optimal X∗

i to maximize

|M∗
i | when the number of points in X∗

i is given. To facilitate
the presentation of the theoretical results below, without loss of
generality, we assume that each covariate in Zi has been scaled
to [−1, 1].
Lemma 1. For i = 1, 2, . . . , R, let ni be the number of points in
X∗

i and γi = σ 2
E/(σ 2

E + niσ
2
A), then

|M∗
i | � γi

(
ni

σ 2
E

)p
,

with equality if and only if Z∗
i forms a two-level OA with ni runs.

Lemma 1 shows that given the number of points in Z∗
i , it

should form an OA to maximize |M∗
i |. To find the subdata that

maximizes |M∗|, we are concerned about two questions. First,
following Lemma 1, does aggregating the OA subdata in each
group maximize the overall information |M∗|? Second, what are
the optimal settings for ni, i = 1, . . . , R? The following theorem,
guiding our later algorithm, answers the two questions.

Theorem 1. For a subdata set X∗ with n points, M∗ in (3) satisfies
that

|M∗| � np−1

σ
2p
E

[ R∑
i=1

γini

]
� Rnp

σ
2(p−1)

E (Rσ 2
E + nσ 2

A)
, (5)

where ni is the number of points of the ith group in X∗
i and γi =

σ 2
E/(σ 2

E + niσ
2
A). In addition, (i) the first equality in (5) holds

when each Z∗
i forms a two-level OA, and further, (ii) the second

equality holds if and only if the runsize of each OA selected from
each group is equal, that is, n1 = · · · = nR.

By Theorem 1, the D-optimal subdata should have a group
orthogonality, that is, equal-sized groups with each group
forming an OA. The following result shows that such group-
orthogonal subdata is also A-optimal.

Theorem 2. For a subdata set X∗ with n points, M∗ in (3) satisfies
that

tr(M∗−1) � σ 2
E

(
1∑R

i=1 γini
+ p − 1

n

)
(6)

� 1
n

(
pσ 2

E + n
R

σ 2
A

)
, (7)

where (i) the equality in (6) holds when each Z∗
i forms a two-

level OA, and (ii) the equality in (7) holds if and only if the
runsize of each OA selected from each group is equal, that is,
n1 = · · · = nR.

Theorems 1 and 2 suggest selecting the group-orthogonal
subdata for fitting linear mixed models. It is also worth noting
that the optimal subdata is independent of σ 2

A and σ 2
E . That is, we

do not need to estimate σ 2
A and σ 2

E before subsampling, which
further simplifies our calculation. To this end, we propose the
GOSS algorithm, which is specifically designed for hierarchical
data and holds for any σ 2

A and σ 2
E .
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4. Group-Orthogonal Subsampling

In this section, we propose the GOSS method. By the discussion
in Section 3, the optimal subdata should have the same group
size and form an OA in each group. Recall that Wang et al.
(2021) introduced the OSS algorithm to select subdata that best
approximates an OA. Hence, GOSS can employ OSS to select the
subdata from each group. Specifically, we sequentially select data
points from the ith group to minimize the discrepancy function:

L
(
Z∗

i
) =

∑
1�j<j′�ni

[
(p − 1) −

∥∥∥z∗
ij

∥∥∥2
/2 −

∥∥∥z∗
ij′

∥∥∥2
/2 + δ

(
z∗

ij, z∗
ij′

)]2
,

(8)

where

δ
(

z∗
ij, z∗

ij′
)

=
p∑

k=2
δ1

(
x∗

ijk, x∗
ij′k

)
,

and δ1(x, y) is 1 if both x and y have the same sign and 0
otherwise. The function L

(
Z∗

i
)

measures the distance between
Z∗

i and an OA. Therefore, the subdata for the ith group obtained
by minimizing (8) can well approximate an OA. The details of
the OSS approach can be found in Section C of the Appendix.

Other than the orthogonality within each group, GOSS needs
to make sure that the group size of the selected subdata are
balanced. Therefore, for the desired subdata size n, we choose
m = n/R points from each group. After we have subdata from
all groups, we aggregate all the subdata and obtain the GLS
estimator for a linear mixed model. Algorithm 1 outlines the
proposed GOSS algorithm.

Algorithm 1 GOSS algorithm

Input: Full data Z = (
ZT

1 , . . . , ZT
R
)T , Y = (

YT
1 , . . . , YT

R
)T ,

subdata size n
Output: The subdata-based GLS estimator of β̆

∗

for i = 1 to R do
Let m = n/R. Use the OSS method to minimize the
discrepancy function in (8) and select a subdata of size m
from group i, denoted as

{
Z∗

i , Y∗
i
}

end for
Aggregate the R subdata sets as Z∗ = (

Z∗T
1 , . . . , Z∗T

R
)T and

Y∗ = (
Y∗T

1 , . . . , Y∗T
R

)T . Let σ̂ 2
A and σ̂ 2

E be consistent estima-
tors of σ 2

A and σ 2
E based on the selected data X∗ = (1n, Z∗)

and Y∗. Estimate the coefficient β using

β̆
∗ = (X∗TV̂∗−1X∗)−1X∗TV̂∗−1Y∗, (9)

where V̂∗ = σ̂ 2
E In + σ̂ 2

AA∗ and A∗ is a block diagonal matrix
with R blocks of 1m1T

m.

Remark 1. The restriction of Algorithm 1 that m = n/R is an
integer is mostly for convenience. In the case that m = n/R is
not an integer, we may use a combination of �m� and 	m
 to
keep the subdata size as n.

Remark 2. We use the method of moments approach proposed
by Gao and Owen (2017) (refer to Section D in the Appendix) to
estimate σ 2

A and σ 2
E in our numerical results in Sections 5 and 6.

From Theorem 1 of Gao and Owen (2020), the moment method
estimators based on GOSS subdata are consistent with variances

var(σ̂ 2
A) = O(R−1) and var(σ̂ 2

E ) = O(m−1).

Remark 3. The computation in Algorithm 1 is mostly involved
in OSS in each group, so the time complexity of Algorithm 1
is O(Np ln m) (Wang et al. 2021). In addition, Algorithm 1 is
naturally suited for distributed and parallel computing. We can
simultaneously process each group of the full data, which will
dramatically accelerate the subsampling process.

Compared to OSS, GOSS offers two main novel advantages.
First, GOSS suggests that subsampling should be groupwise for
hierarchical data, and the group size of the subdata should be
the same. This is to ensure that the contribution of groups in
the subdata are balanced. OSS, by contrast, directly subsamples
the full data, resulting in unbalanced contributions from groups.
Second, compared to OSS, which only ensures the combinatorial
orthogonality of the entire subdata, GOSS further ensures the
combinatorial orthogonality of the subdata in each group. This
groupwise orthogonality adds an additional layer of value to the
subdata. As detailed in the theory presented in Section 3, it will
significantly benefit the fitting of a linear mixed model.

Next, we discuss the asymptotic behavior of the slope estima-
tor. Let β = (β1, βT−1)

T , where β1 is the intercept and β−1 the
slope parameter. In practice, we are typically more interested in
the estimation of β−1. Write the β̆

∗ in (9) as β̆
∗ = (β̆∗

1 , β̆∗T
−1)

T .
We next study the asymptotic normality of β̆

∗
−1 as an estimator

of β−1. Write the subdata design matrix Z∗
i from each group as

Z∗
i = L∗

i + D∗
i ,

where L∗
i is a two-level OA, and D∗

i is the difference between
Z∗

i and L∗
i . Let D∗ = (D∗T

1 , . . . , D∗T
R )T and ||D∗||∞ be the

entrywise max norm, that is, the maximum absolute value of the
entries in D∗. We have the following theorem.

Theorem 3. For a fixed number of groups R, suppose that the
maximum norm of D∗ is ||D∗||∞ = o(1) as n = Rm → ∞,
E|e3

ij| < ∞, and σ̂ 2
A and σ̂ 2

E are consistent estimators of σ 2
A and

σ 2
E , respectively. For the estimator of the slope parameter in (9),

β̆
∗
−1, we have

√
n

(
β̆

∗
−1 − β−1

) d−→ N(0, σ 2
E Ip−1), as n → ∞,

where “ d−→” denotes convergence in distribution.

Theorem 3 indicates that the slope estimator based on a
GOSS subdata is asymptotically normal with a covariance matrix
σ 2

E Ip−1 and an average variance σ 2
E , which is the smallest pos-

sible average variance for an estimator of β−1. Because the
subdata size n is typically finite, the smaller asymptotic variance
guarantees that the estimator based on a GOSS subdata is more
accurate than other subdata.

5. Simulation Studies

In this section, we evaluate the performance of GOSS with
simulation studies. Let the number of groups R = 20. The first
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10 groups have the same data size, and the last 10 groups have
the same data size, that is, C1 = · · · = C10 and C11 = · · · =
C20. Four cases are considered to generate the design matrix
Z = (zij,k) of the full data for j = 1, . . . , Ci, i = 1, . . . , 20,
and k = 2, . . . , p. Cases 1 and 2 consider homogeneous data,
where data in all groups are from an identical distribution.
Cases 3 and 4 consider heterogeneous data with different group
means, simulating heterogeneity among the groups. Specifically,
we consider the following settings:

Case 1. The covariates zij’s are independent and follow a multi-
variate uniform distribution: zij,k ∼ U[−1, 1], k = 2, . . . , p.

Case 2. The covariates zij’s follow a multivariate normal distri-
bution: zij ∼ N(0, �), with

� =
(

0.5I(k�=k′)
)

, k, k′ = 2, . . . , p.

Case 3. The covariates zij’s follow a uniform distribution: zij,k ∼
U[θi1, θi2], where U[θi1, θi2] is a shift of U[−1, 1] such that the
centers of groups vary within {−0.5, −0.45, . . . , 0.45}. Thus,
we set θi1 = −1 + (i − 11)/20 and θi2 = 1 + (i − 11)/20.

Case 4. The covariates zij’s follow a multivariate normal dis-
tribution: zij ∼ N(μi1, �), with μi varying within
{−2, −1.8, . . . , 1.8}.

The response data are generated from the linear mixed model
(1) with the true value of β being a 51 × 1 vector of unity
which includes an intercept and 50 slope parameters, so p = 51.
The error term is generated from eij ∼ N(0, 9). We consider
two settings of the random effect, namely, ai ∼ N(0, 0.5) and
ai ∼ t(3), to illustrate the impact of the distribution and variance
of the random effect. Here ai ∼ N(0, 0.5) simulates smaller
random effects and thus lower correlations between responses
within groups, while ai ∼ t(3) simulates larger random effects
and higher correlations within groups.

5.1. Comparison of Performance

The simulation is repeated for B = 200 times. We com-
pare the following different subsampling methods: UNIF
(simple random subsampling with uniform weights), LEV
(leveraging subsampling), IBOSS, OSS, GUNIF (Group-UNIF),
GLEV (Group-LEV), GIBOSS (Group-IBOSS), and GOSS. The

Figure 1. The log10(MSE) of the estimated slope parameters for different subdata sizes n. The upper panels are for ai ∼ N(0, 0.5) and the lower panels for ai ∼ t(3). The
full data size is N = 1.5 × 105. The bars represent standard errors obtained from 200 replicates. Some bars are very narrow, so they seem to be invisible.
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GUNIF, GLEV, and GIBOSS methods select the same number of
data from each group using the UNIF, LEV, and IBOSS methods,
respectively. We compare these three methods with the GOSS
algorithm to demonstrate that the optimality of GOSS is not
merely attributed to the balance of subdata sizes among groups,
but also to the orthogonality of the subdata within each group.
For each subsampling method, we consider the empirical MSE
of the slope parameters:

MSE = B−1
B∑

b=1
||β̆∗(b)

−1 − β−1||2, (10)

where β̆
∗(b)

−1 is the GLS estimator of β−1 based on subdata in the
bth repetition.

We first consider the setting of C1 = · · · = C10 = 5×103 and
C11 = · · · = C20 = 2C1, resulting in a fixed full data size of N =
1.5×105. Since σ 2

A and σ 2
E are unknown in practice, we estimate

them based on subdata using the moment method proposed by
Gao and Owen (2017) and plug them into the estimator β̆

∗(b)

−1 .
Figure S4 in Appendix shows the log10(MSE) of σ̂ 2

A and σ̂ 2
E with

respect to subdata sizes n = 103, 2 × 103, 3 × 103, and 4 × 103

when ai ∼ N(0, 0.5). We observe that all the subdata tend to

provide reliable estimates for σ 2
A and σ 2

E , except for OSS in Case
3 when the subdata size is small (n = 103).

With σ̂ 2
A and σ̂ 2

E , Figure 1 plots the log10(MSE) of the plug-
in estimator β̆

∗(b)

−1 with respect to n. For Cases 1 and 2, grouped
methods perform similarly to their counterparts because groups
are identically distributed, and GOSS and OSS outperform other
methods due to the orthogonality of the subdata. For Cases 3
and 4, however, the performance of GOSS dominates all other
methods for every subdata size n, although all methods decrease
at the same rate. It should be noted that GUNIF, GLEV, and
GIBOSS do not outperform their counterparts, indicating that
the advantages of the GOSS method go beyond the balancing of
group sizes, and within-group orthogonality is crucial in deter-
mining its superiority. Moreover, the fact that the GOSS method
outperforms other methods in both the upper and lower panels
of Figure 1 demonstrates that GOSS is powerful regardless of the
size of random effects.

We also consider the performance of GOSS for different
full data sizes and show the result in Figure 2. We consider
C1 = · · · = C10 ∈ {103, 5 × 103, 2.5 × 104, 1.25 × 105} and
C11 = · · · = C20 = 2C1, which results in the full data size
N ∈ {3 × 104, 1.5 × 105, 7.5 × 105, 3.75 × 106}. The subdata size

Figure 2. The log10(MSE) of the estimated slope parameters for different full data sizes N. The subdata size is fixed at n = 4 × 103. The upper panels are for ai ∼ N(0, 0.5),
and the lower panels for ai ∼ t(3). The bars represent standard errors obtained from 200 replicates.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1043

Figure 3. The log10(MSE) of the estimated slope parameters for different subdata sizes n. The upper panels are for ai ∼ N(0, 0.5) and the lower panels for ai ∼ t(3). The
full data size is N = 5.5 × 105. The bars represent standard errors obtained from 200 replicates. Some bars are very narrow and may be invisible.

is fixed at n = 4 × 103. As evidenced by Figure 2, for Cases 1
and 2, grouped methods perform similarly to their counterparts,
and both GOSS and OSS exhibit outstanding performance and
fast decreasing MSEs as N increases, meaning that they can both
extract more information from the full data as the size of the full
data increases. For Case 3, OSS fails to extract more information
as N increases because of the heterogeneity of the full data, but
GOSS keeps its fast decreasing trend and outperforms all other
methods significantly. For Case 4, the GOSS method retains its
remarkable superiority, even though the IBOSS and GIBOSS
also exhibit a slow decreasing trend.

We further examine the performance of GOSS when there
is an extreme imbalance among group sizes in full data. To this
end, we change the setting of Ci to C1 = · · · = C10 = 5×103 and
C11 = · · · = C20 = 10C1 = 5×104. Figure S5 in Appendix plots
log10(MSE) for σ̂ 2

A and σ̂ 2
E with respect to the subdata size n, and

Figure 3 shows the log10(MSE) for β̆
∗(b)

−1 versus n. The GOSS still
outperforms all other methods for Cases 3 and 4 because of its
balance among groups and within-group orthogonality, which
still provides more information even though the group sizes of
the full data are extremely unbalanced.

To see the performance of GOSS when the full data size grows
and is extremely imbalanced, we further consider C1 = · · · =
C10 ∈ {103, 5 × 103, 2.5 × 104} and C11 = · · · = C20 = 10C1,
with the full data size N ∈ {1.1×105, 5.5×105, 2.75×106}. The
subdata size is again fixed at n = 4×103. According to Figure 4,
all subsampling methods behave similarly as in Figure 2. One
point to note is that for Case 2, the grouped methods appear to
be slightly inferior to their counterparts, mainly because of the
homogeneous and overlapping information in all groups of the
full data. In this case, drawing the same amount of information
from each group can result in missing more important informa-
tion in bigger groups. For Cases 3 and 4, the superiority of GOSS
is attributed to the balance of heterogeneous groups, which
contain information from different aspects. The balance among
these groups enables more accurate modeling and parameter
estimation, resulting in a fast downward trend and improved
performance.

We have also conducted simulations to evaluate the perfor-
mance of subsampling methods in estimating the intercept and
predicting the response over the full data. Possible model mis-
specification has also been considered. Due to page limitations,
the results are deferred to Section B of the Appendix.



1044 J. ZHU, L. WANG, AND F. SUN

Figure 4. The log10(MSE) of the estimated slope parameters for different full data sizes N, when there is an extreme imbalance in the data sizes among groups. The subdata
size is fixed at n = 4 × 103. The upper panels are for ai ∼ N(0, 0.5), and the lower panels for ai ∼ t(3). The bars represent standard errors obtained from 200 replicates.

Figure 5. The log10(SE) of β̆
∗
−1 with different subdata sizes for the accelerometer

dataset.

5.2. Computing Time

Table 1 reports the computation times (including the selection
of subdata and the computation of estimators of β , in seconds)
under the setting of C1 = · · · = C10 = 5 × 103, C11 = · · · =

C20 = 2C1, p = 6, 51, and 101, and n = 103. Covariates are
generated as in Case 3 and the random effect ai ∼ N(0, 0.5).
The times shown in Table 1 are the mean wall-clock times of
200 repetitions, with each wall-clock time measured using the
function Sys.time() in R. All computations are carried out on a
laptop running Windows 10 21H2 with a 3.00GHz Intel Core
i7 processor and 16GB memory. As indicated in Table 1, the
grouped methods are more time-efficient than the ungrouped
method. UNIF and GUNIF require the least computation time
as expected. The GOSS is faster than LEV, OSS, and IBOSS
and is comparable to GLEV and GIBOSS. Table 2 reports the
computation times for different full data sizes N with a fixed
dimension p = 51 and a fixed subdata size n = 1000. The GOSS
is faster than LEV, OSS, and GIBOSS and is comparable to IBOSS
and GLEV for all full data sizes.

6. Real Data Analysis-Accelerometer Dataset

We analyze the accelerometer dataset to evaluate the perfor-
mance of the GOSS approach. The data records the vibration of
the cooler fan with weights on its blades, which allows us to infer
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Table 1. The wall-clock times (in seconds) of subsampling methods with n = 103.

Method UNIF LEV IBOSS OSS GUNIF GLEV GIBOSS GOSS

p = 6 0.2240 0.2297 0.2001 0.2602 0.0883 0.1431 0.1313 0.1373
p = 51 0.6006 1.2980 1.5579 1.8271 0.3936 0.8973 0.9745 0.8799
p = 101 0.9349 3.6877 2.9458 3.6636 0.7431 1.7489 1.8859 1.7723

Table 2. The wall-clock times (in seconds) of subsampling methods with p = 51.

Method UNIF LEV IBOSS OSS GUNIF GLEV GIBOSS GOSS

N = 3 × 104 0.1347 0.1925 0.2984 0.5159 0.0981 0.1868 0.1867 0.1837
N = 7.5 × 105 1.2927 2.7587 1.8938 2.8484 0.6611 2.0032 2.7679 1.9937
N = 3.75 × 106 6.3441 14.3277 8.8961 11.3674 3.0972 9.3464 17.8353 9.3434

Table 3. The real data wall-clock times (in seconds) of subsampling methods with n = 1000.

Method UNIF LEV IBOSS OSS GUNIF GLEV GIBOSS GOSS Full

Time 0.1400 0.2133 0.4142 0.5555 0.1491 0.2844 0.3319 0.2997 426

when the motor failed. To generate different vibration scenarios,
the experimenters set 17 different cooler fan speeds ranging
from 20% to 100% of the maximum fan speed at 5% intervals.
Vibrations were measured by accelerometers at a frequency of 20
milliseconds, with vibration measurements taking 1 min at each
speed and generating 3000 recordings at each frequency. Thus,
a total of N = 153,000 vibration records were collected. Fur-
ther details about the data can be found at Scalabrini Sampaio
et al. (2019). At each speed, the accelerometer measures 9000
observations of vibration on x, y, and z axes. We grouped the
data according to the 17 different cooler fan speeds. Thus, the
number of groups is R = 17. For each speed, the vibration on
the z axis varies with the vibration on the x and y axes. We take
the x and y axes as independent variables and the z axis as the
response variable to assess the impact of x and y axes vibrations
on the z axis. We thus consider the model

zij = β0 +β1xij +β2yij +ai + eij, i = 1, . . . , 17, j = 1, . . . , 9000,
(11)

where ai denotes the random effect of the cooler fan speed, and
eij is the random error of the response at the same speed.

We consider subdata sizes n = 1000, 1510, 2173, and 2581
and assess subsampling methods by examining the difference
between the estimator derived from subdata and the estimator
obtained from the full data. That is, we consider the squared
error (SE)

SE = ||β̆∗
−1 − β̂−1||2,

where β̂−1 is the GLS estimator of the slope parameter β−1 =
(β1, β2)

T based on the full data, and β̆
∗
−1 is the estimator from

subdata. For the methods UNIF, LEV, GUNIF, and GLEV, we
repeat them 200 times due to their randomness and calculate
the average SE. OSS, IBOSS, GOSS, and GIBOSS are determin-
istic methods and are executed only once. Figure 5 plots the
SE for different subsampling methods. It is clear that GOSS
outperforms all other methods for all subdata sizes in terms of
minimizing the SE. Further, the SE for GOSS decreases fast as
the subdata size increases, which suggests that GOSS allows a
better estimation of the impact of x and y axes vibration on the
vibration of the z axis.

Table 3 shows the wall-clock times (average over 200 repe-
titions) of different subsampling methods for the accelerometer
data with n = 1000. The comparison in Table 3 is similar with
that in Table 1, which shows that GOSS is faster than OSS and
IBOSS and is comparable to LEV, GLEV, and GIBOSS.

7. Concluding Remarks

In this article, we present a novel subsampling method called
GOSS, which is designed for selecting subdata from large
datasets with a hierarchical structure. GOSS achieves data size
balance among groups and combinatorial orthogonality within
each group, ensuring that the selected subdata is D- and A-
optimal for the GLS estimator of a linear mixed model. Exten-
sive simulations and a real-world application demonstrate that
GOSS outperforms existing methods in minimizing the MSE
of the estimator for the slope parameter, especially in cases
where data groups are heterogeneous. Theoretical results estab-
lish that the estimator obtained from the GOSS subdata has the
minimum variance among all possible subdata, as evidenced
by its asymptotic distribution. Additionally, GOSS is faster
than competing methods, making it a highly efficient option
for accelerating the analysis of big data using a linear mixed
model.

Particular aspects associated with this research require more
extensive and thorough studies. First, GOSS is developed for
scenarios where the full dataset has a fixed number of groups,
with the sample size in each group tending toward infinity.
However, in real-world applications, we may encounter sit-
uations where the number of groups tends toward infinity,
while the sample size of each group remains limited. Subsam-
pling methods that can handle this scenario require further
study. Second, we have only considered a constant within-
group variance for convenience, but it is also common to
have varying within-group variances, and addressing this issue
is of pressing concern for future research. Third, the data
within each group may be sparse or incomplete due to miss-
ing values. Investigating suitable subsampling methods to han-
dle sparse and incomplete data is another valuable avenue for
exploration.
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Supplementary Materials

Title: Proofs of theoretical results and related materials
Appendix: provides proofs of the theoretical results in the article, addi-

tional numerical results, the OSS algorithm, and an estimation method
for σ 2

A and σ 2
E .

Code and Data File: provides R code and data to replicate our results and
apply the method to other dataset. The R code and data are described in
a readme file.
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